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1. Introduction

Since the seminal paper of Hamilton (1989), many authors have proposed variations of
the Markov-switching model. In this regard, Durland and McCurdy (1994) introduced the
duration-dependent Markov-switching (DDMS) model, based on a higher-order Markov
chain that allowed state transition probabilities to be duration dependent. Initially ap-
plied to investigate business cycle asymmetries, this modeling approach includes bull and
bear market stock identification (Maheu and McCurdy, 2000a) and FX volatility esti-
mation (Maheu and McCurdy, 2000b), since duration can be included as a conditioning
variable in conditional mean and variance. The empirical literature has also explored mul-
tivariate generalization (Pelagatti, 2007), leading indicator inclusion (Layton and Smith,
2007), and, more recently, multi-state expansions (Bejaoui and Karaa, 2016) for the
baseline DDMS specification. However, these applications were primarily focusing on the
in-sample analysis, and none of the previous studies have conducted detailed point fore-
casting exercises, especially for the conditional volatility process. This paper thus aims to
investigate the out-of-sample properties of the DDMS model to forecast the conditional
volatility while allowing for uncertainty in its duration process.

More precisely, duration selection is fundamental for the success of a DDMS con-
ditional volatility model. In contrast to the other parameters of the model, duration
selection is rather arbitrary and has been overlooked in empirical work, especially in a
forecasting context. This is particularly relevant for conditional volatility models, where
it is difficult to set the parameter on theoretical grounds. The researcher may think that
the impact of the duration-dependence vanishes after selecting a reasonably large value.
However, as we show in the empirical application, this idea hardly holds in a conditional
volatility context given the high persistence in volatility. Since the DDMS model is able
to generate different conditional volatility forecasts for every duration parameter selected,
the empirical question then becomes how to set the duration parameter to generate more
precise forecasts.

In this paper, we tackle the problem of duration selection for volatility forecasting
in a real-time setting. We recognize that the duration parameter may be subject to
a variance and estimation error. Duration variability arises as there is uncertainty in
the autocorrelation pattern of the volatility process, leading to parameter breaks in its
process. This explains the success of Markov-switching models for volatility estimation
(see among others Cai, 1994; Gray, 1996). Moreover, estimated GARCH models tend
to be highly persistent or very close to being non-stationary (for an explanation see
Mikosch and Stărică, 2004). These stylized facts mean that the temporal dependence
in the volatility process is likely not constant, but rather changes over time. The direct
implication for DDMS models is that the duration parameter may also change over time,
as the duration implies dependence between two separate observations in time.

The usual approach for selecting the duration is by setting an arbitrarily large thresh-
old, or by applying a search grid for the highest likelihood value at the full sample.
However, by overlooking changes in the duration, these methods are not able to mimic
online (i.e. real-time) predictions. This is especially relevant in light of inevitable spec-
ification issues when applying real data, given the latency of conditional volatility. As
a consequence, the forecasting power of the DDMS has still not been evaluated in an
out-of-sample context.
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Furthermore, the usual approach of fixing duration may generate less precise forecasts.
Past research has considered all estimated parameters and filtered values as a function
of a deterministic duration parameter (see Maheu and McCurdy, 2000b). The problem
escalates as all other parameters are estimated conditional on a deterministic duration.
Moreover, the standard error of the forecasts do not take into account possible errors in the
duration. This means that if an inappropriate duration parameter is selected, these errors
will be dragged into the forecasting functions rendering them less precise. Furthermore, it
is also relevant for interval forecasting, which implies that tests for forecasting superiority
may fail to reject the null.

From this perspective, we aim at incorporating duration uncertainty in forecasting
conditional volatility. However, it is not straightforward to incorporate duration uncer-
tainty as the estimation of the duration parameter lacks a formal classical maximum
likelihood or Bayesian treatment. We tackle this problem by generating forecast func-
tions from DDMS models with different duration parameters and dynamically forming
forecasts. This allow us to circumvent the problem of estimating duration in the forecast-
ing context, which simplifies the procedure. It is worth mentioning that our statistical
approach is sufficient for our empirical objective, which is to evaluate the volatility fore-
casting power of DDMS models. We consider simple averages and data-driven methods,
allowing volatility forecasts to incorporate duration uncertainty in different ways.

Finally, our empirical application extends the research concerned with evaluating al-
ternative volatility modeling and forecasting methods for bitcoin log-returns by broad-
ening the GARCH-type models to include the DDMS specification. More precisely, we
conducted a pair-wise statistical test for the one-day ahead predicted bitcoin volatility
from April 2018 to January 2020, compriseing 641 out-of-sample observations. We apply
different volatility proxies and loss functions commonly found in the literature for robust-
ness checking. In addition, we perform a value-at-risk (VaR) comparison between the
DDMS and several GARCH and MS-GARCH models. Overall results indicate that our
modeling approach outperforms benchmark specifications. In addition, taking into ac-
count the uncertainty about the duration dependence parameter is important to improve
point forecasts and VaR estimation.

The remainder of this paper is organized as follows: Section 2 presents the model
methodology; Section 3 describes the data and our empirical findings; Section 4 concludes.

2. Methodology

2.1. Duration Dependence

Based on Maheu and McCurdy (2000b), we begin by assuming that the time series
process is governed by a discrete mixture of distributions, where the state mixing variable
St ∈ {0,1} depends only on St−1 and its duration, Dt−1. The duration variable depicts
the length of a run of realizations of a particular state and is given by:

Dt = min(Dt−1I (St ,St−1)+ 1,τ) , (1)
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where I(St ,St−1) = 1 if St = St−1 and 0 otherwise. To make the estimation possible,
the duration memory is defined by τ.1 Moreover, it is necessary to parametrize the
transition matrix using a function with restricted range between zero and one so that all
the probabilities are well defined. Several parametrizations are available in the literature
(see Maheu and McCurdy, 2000a). In this paper, we employ the sine-squared function,
which was found to be computationally more efficient to find the maximum likelihood
estimate while proving similar results when comparing to alternative parametrizations.
Using i and d to index the state and duration, where γ1(i) e γ2(i) are the parameters, the
transition probability for i = 0,1 is given by:

P(St = i|St−1 = i,D(St−1) = d) =

sin(γ1(i)+ γ2(i)d)2, if d ≤ τ

sin(γ1(i)+ γ2(i)τ)2, if d > τ

i = 0,1. (2)

Given the duration dependence and the transition probabilities in Equations (1)-(2),
the model for the conditional volatility equation is given by:

rt = σ(St ,Dt)zt , zt ∼ N(0,1), St = 0,1 (3)

σ(St ,Dt) = (ω(St)+ ζ(St)Dt)
2, (4)

where, the latent state variable affects the level of volatility, ω(St) = ω0(1− St) + ω1St ,
while the duration of the states, Dt , affect the dynamics of volatility through ζ(St)Dt ,
where, ζ(St) = ζ0(1−St)+ζ1St . zt is is assumed to follow an identically and independently
normal distribution.

2.2. Forecast Combination

To tackle the problem of duration selection for volatility forecasting, we rely on a model
combination procedure to aggregate N individual models forecasts (each one indexed by
a fixed duration memory) into a pooled modeling approach. Let, σ̂2

t+1, be the weighted

average of the individual volatility forecasting models
{

σ̂
2
i,t+1

}N

i=1
:

σ̂
2
t+1 =

N

∑
i=1

wi,t σ̂
2
i,t+1, (5)

where {wi,t}N
i=1 are the combining weights at time t and N is taken over a set of DDMS

models restricted by lower (upper) bound of τ.
In our empirical analysis, we set the lower and upper bounds of τ using the smoothed

probabilities of the restricted model (γ2(i) = 0, ζ(i) = 0). More precisely, we estimate
the classical Markov-switching model (without duration dependence) and take the mean
value using the shortest (longest) period that each regime has a smooth probability greater
than 0.5 (on average). Despite our duration selection bands’ lack of statistical properties,

1Although is necessary to set a duration memory for the DDMS estimation, our paper analysis remain
on the uncertainty regarding the choice value of τ.
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this data-driven method follows in part the business cycle identification methodology.
However, we are particularly interested in capturing the recurring low and high frequency
of conditional volatility to set duration uncertainty.2

For the combining weights, we use two methods: (i) fixed weights, i.e., the simple
average: wi,t = 1

N , and (ii) moving weights, i.e., the discount mean square prediction
error (DMSPE). In particular, this method uses the functions of the historical forecasting
performance of the individual models over a holdout out-of-sample period as weights:

wi,t = ϕ
−1
i,t

/
N
∑
j=1

ϕ
−1
j,t
, (6)

where,

ϕi,t =
t

∑
s=m+1

θ
t−s(

σ
2
s − σ̂

2
i,s
)2
, (7)

where θ is the discount factor. For θ = 1, there is no discounting and the individual
forecasts are uncorrelated. When θ < 1, greater weight is attached to the recent forecast
accuracy of the individual models (see Stock and Watson, 2004). Although much research
has been done on model combination techniques, we focus on simpler methods since we
want to marginalize the gains of using different duration’s models.

2.3. Model Estimation

The DDMS model can be estimated using the maximum-likelihood approach (see
Maheu and McCurdy, 2000a) or using MCMC methods (see Pelagatti, 2007). In any
case, the DDMS model can be collapsed into a first-order Markov model with N states,
if we define a new latent variable St , which covers all possible paths from St = i up to τ,
for i = 0,1. More specifically, the transition matrix for St , is given by:

P =


p11 p21 . . . pN1
p12 p22 . . . pN2
...

...
...

p1N p2N . . . pNN

 , (8)

where pi j = P(St = i|St−1 = j), with i, j = 1, . . . ,N is constructed using the transition
probability equation, and the number of states N is function of τ given by N = 2+2(τ−1).3

On this basis, the filter and the likelihhod can be performed following Hamilton (1989).

2For more details, see the empirical results.
3This equation is adapted from Maheu and McCurdy (2000a) since we are not modeling the conditional

mean equation.
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3. Data and Results

3.1. Data

For our study’s purposes, we use daily prices of the Bitcoin (in U.S dollar) traded on
Bitstamp from January 2015 to January 2020. This data series is an interesting case of
study since cryptocurrency is more volatile than traditional assets, and recently, it has
gained increased attention in empirical studies (see Corbet and Katsiampa, 2020). Table
1 reports some descriptive statistics of the bitcoin log-returns. The mean is 0.0017 and
is statistically close to zero, while the standard deviation is 0.0331 with an annualized
value of 0.6330. The largest price increase is 0.1585, while the largest price decrease is
-0.2175. The skewness is small and negative, and the kurtosis is higher than the normal
distribution value. The Jarque-Bera (JB) statistics also indicated the departure from
normality, while the Lagrange Multiplier Test and the Ljung-Box statistics are highly
significant, suggesting ARCH effects in the data series.

Table 1: Descriptive Statistics

Obs. Mean Std. Dev. Max. Min. Skewness Kurtosis JB LM(8) Q2(8)

1824 0.0017 0.0331 0.1585 -0.2175 -0.3527 7.3730 1491.2∗∗∗ 244.2∗∗∗ 433.4∗∗∗

Note: This table presents the summary statistics of the Bitcoin daily log-returns from
01/01/2015 to 01/01/2020. JB refers to the Jarque-Bera test of normality. LM is the
Lagrange Multiplier test for ARCH effects in the demeaned returns, while Q2 is the corre-
sponding Ljung-Box statistic on the squared demeaned returns, respectively. ∗∗∗ indicates
the rejection of the null hypotheses at the 1% level.

The out-of-sample analysis is conducted through expanding window estimation from
April 2018 to January 2020 (641 daily observations). This forecasting sample period is
very volatile and was selected to test the forecasting ability of the DDMS model under
challenging market conditions. Furthermore, it extends other empirical applications that
use Markov-switching models to forecast bitcoin volatility (see, for example Ardia et al.,
2019; Segnon and Bekiros, 2020). To evaluate the DDMS combination volatility forecast’s,
we use intraday 5-minute quotes as an alternative source to proxy volatility instead of
squared daily returns (see Andersen and Bollerslev, 1998).4 Following Trućıos (2019), we
use the realized variance (RV) and few other realized measures robust to microstructure
noise and jump, which are widely used nowadays. More specially, we use the bipower
variation - BV (Barndorff-Nielsen and Shephard, 2004), MinRV and MedRV (Andersen
et al., 2012) as proxies of true volatility. Details about realized measures, see Table 6 in
Appendix.

4The data series were obtained from bitcoincharts website: https://bitcoincharts.com.
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3.2. Empirical Motivation Methodology

We start the predictive analysis of the DDMS model combination, reporting our em-
pirical strategy to set the lower and upper bounds of τ. Using the in-sample data set
from January of 2015 to March 2018 (1183 observations), Table 2 presents the average of
the Markov-switching model’s smoothed probabilities. Using the shortest (*) and longest
(**) periods which each state presents a chance greater than 0.5, we proxy the lower
and upper bounds of τ taking the mean of these values, i.e., τmin = 5 = (3∗+ 7∗)/2 and
τmax = 236 = (335∗∗+138∗∗)/2, respectively. Once we define these values, the model com-
bination scheme is constructed using equally spaced models over the duration index set.
Particularly, we take five models with durations: 5, 60, 120, 180, and 236, to run the next
forecasting exercises.

Table 2: Smoothed Probability of the Restricted Model.

St = 0 Days Avg. Prob. St = 1 Days Avg. Prob.

- - - 1-45 45 0.946

46-54 9 0.711 55-59 5 0.953

60-73 14 0.842 74-82 9 0.924

83-99 17 0.861 100-102 3∗ 0.684

103-183 81 0.969 184-191 8 0.780

192-226 35 0.939 227-235 9 0.957

236-294 59 0.980 295-343 49 0.913

344-354 11 0.789 355-357 3 0.725

358-375 18 0.907 376-385 10 0.912

386-509 124 0.983 510-517 8 0.762

518-524 7∗ 0.791 525-551 27 0.957

552-574 23 0.958 575-579 5 0.886

580-717 138∗∗ 0.991 718-745 28 0.979

746-793 48 0.922 794-821 28 0.853

822-848 27 0.918 849-1183 335∗∗ 0.976

Note: This table reports the shortest (*) and longest (**) periods which each state presents
a smoothed probability greater than 0.5 on average. These values are used to characterize
the lower (upper) bound in our DDMS combination; τmin = 5 = (3∗+7∗)/2 and τmax = 236 =
(335∗∗+ 138∗∗)/2, respectively.

At this point, it is straightforward to notice that our modeling approach ultimately
depends on the in-sample data size estimation since it affects the regime classification
used to set the lower and upper bounds of τ. However, our empirical research focuses
on the idea that the DDMS model can generate different conditional volatility forecasts
for every duration parameter selected. This enables us to explore the model combination
technique to incorporate duration uncertainty in the analysis.

Before we conduct a statistical test for the predictive ability of the DDMS combina-
tion, we first explore the empirical issues of fixing the duration. Figure 1 displays the
accumulated loss function for the one-day-ahead forecasting as the out-of-sample sizes
changes. More precisely, we use the previously selected duration models and the realized
variance. Additionally to the mean squared error - MSE (upper side figures), we also
compute the QLIKE robust loss function (bottom side figures). Based on Patton (2011),
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the use of the robust function leads to selecting true volatility forecasts even if proxies
are imperfect due to noise presence. In general, for the beginning of the out-of-sample
(first two quarters), the DDMS 60 is the best model. On the other hand, the DDMS 180
and 236 present the best results for the ending out-of-sample periods (last two quarters).
Our empirical finding is more evident using the robust loss function, as we see by the
vertical distance between the best model and other specifications.

Figure 1: Forecasting Sample Size and Duration Dependence
Loss Functions & RV 5 min.

(a) MSE (105) x 1, 2 QTD. (b) MSE (105) x 6, 7 QTD.

(c) QLIKE x 1, 2 QTD. (d) QLIKE x 6, 7 QTD.

3.3. Point Forecasting

We conduct the point forecasting analysis comparing the duration dependence model
combination with the GARCH-type specifications. More precisely, we use the GARCH,
EGARCH, and GJR-GARCH models, with (without) switching process as benchmark
models.5 Although the literature about bitcoin volatility has widely recognized the
GARCH-type specifications, we broad these studies using the duration dependence model.
We also expand our point forecasting exercise in two directions. First, we also combine
the GARCH-type specifications in line with the duration models. Secondly, we compare
the combination approach with the fixed duration model. In this case, we use the in-
termediate duration model, DDMS 120, since its raking remains relatively stable as the

5See the model specifications in Table 7 in Appendix.
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out-of-sample sizes changes, as seen in Figure 1. We compare the forecast results using
the Diebold-Mariano-West test (Diebold and Mariano, 1995; West, 1996) through the
proxies volatiles (RV, BV, MinRv, and MedRV) for the MSE and QLIKE loss functions.

Table 3 shows the results for the fixed weighted model combination. In most cases, the
t-statistic is positive, indicating that the benchmark model forecasts generated a larger
average loss than the DDMS combination. Notably, exceptions are obtained exclusively
using the MSE loss function for the models GARCH, GJR-GARCH, and EGARCH (not
for all proxies). For the robust QLIKE loss function, the t-statistic is positive for all mod-
els, and the null hypothesis of equal predictive accuracy is rejected at most of the models
at 0.10 (or lower) level. Only 5 of 32 pair-wise results is significate greater than 0.10
level. Despite using a simple combination strategy, the overall results indicate that the
duration dependence combination surpasses some of the empirical literature’s established
models.

Table 3: Diebold–Mariano–West test
Fixed Weighted - Mean

Models Loss Functions MedRV (5 Min.) MinRV (5 Min.) BV (5 Min.) RV (5 Min.)

DDMSC x GARCH
MSE -0.50 -0.45 -0.71 -0.88

QLIKE 1.70 1.67 1.79 2.11

DDMSC x MS-GARCH
MSE 1.11 1.11 1.42 2.08

QLIKE 1.97 1.83 2.40 3.43

DDMSC x EGARCH
MSE 0.04 0.15 -0.03 -0.19

QLIKE 1.56 1.51 1.60 1.83

DDMSC x MS-EGARCH
MSE 0.69 0.72 0.82 0.97

QLIKE 1.87 1.77 2.25 3.01

DDMSC x GJR-GARCH
MSE -0.54 -0.47 -0.75 -0.93

QLIKE 1.69 1.66 1.78 2.09

DDMSC x MS-GJR-GARCH
MSE 1.92 1.81 1.96 2.16

QLIKE 1.72 1.60 1.76 1.97

DDMSC x Mean Garch-Types
MSE 0.07 0.20 0.11 0.08

QLIKE 1.58 1.51 1.78 2.23

DDMSC x DDMS 120
MSE 0.80 0.75 0.58 0.58

QLIKE 1.75 1.71 1.82 2.14

Note: The table above presents the t-statistics from Diebold–Mariano–West tests of equal predictive ac-
curacy for the benchmark models and the duration-dependent Markov-switching Combination (DDMSC)
approach. In bold, we have the t-statistic greater than 1.65 (1.96) in absolute value, which indicates a
rejection of the null of equal predictive accuracy at the 0.10 (0.05) level. A positive t-statistic indicates that
the benchmark model forecast produced larger average loss than the DDMSC approach, while a negative
sign indicates the opposite. In our forecast exercise, we use five equally spaced duration values, 5, 60, 120,
180 and 236, respectively
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Tables 4 and 5 show the moving weighted model combination’s results using θ =
0.9 and θ = 1.0 as discount factor values.6 Although the same combination method is
used, results for θ = 1.0 share similar characteristics to using fixed weights. Moreover,
Table 4 displays a small frequency of null rejections for the QLIKE loss function. This
suggests that using θ = 1.0 would be more appropriate for the DMSFE combination since
it does not assign weights to recent observations. The rationale is that a large number
of observations and consequently forecasting errors can be necessary to define a duration
process for the volatility where they should induce similar effects on its memory. Thus,
attaching higher weights only to closer observations is not enough to fully capture the
memory process of the volatility.

Table 4: Diebold–Mariano–West test
Moving Weighted - DMSFE θ = 0.9

Models Loss Functions MedRV (5 Min.) MinRV (5 Min.) BV (5 Min.) RV (5 Min.)

DDMSC x GARCH
MSE -0.47 -0.41 -0.69 -0.86

QLIKE 1.74 1.66 1.83 2.23

DDMSC x MS-GARCH
MSE 1.13 1.13 1.43 2.10

QLIKE 1.58 1.55 2.11 3.35

DDMSC x EGARCH
MSE 0.09 0.19 0.01 -0.13

QLIKE 1.52 1.44 1.56 1.86

DDMSC x MS-EGARCH
MSE 0.72 0.75 0.85 1.02

QLIKE 1.55 1.51 2.05 3.05

DDMSC x GJR-GARCH
MSE -0.51 -0.43 -0.72 -0.91

QLIKE 1.73 1.65 1.81 2.21

DDMSC x MS-GJR-GARCH
MSE 1.93 1.82 1.97 2.18

QLIKE 1.31 1.32 1.36 1.53

DDMSC x DMSFE Garch-Types
MSE 0.02 0.17 0.08 0.05

QLIKE 1.45 1.37 1.67 2.26

DDMSC x DDMS 120
MSE 0.91 0.88 0.68 0.68

QLIKE 1.49 1.45 1.48 1.88

Note: The table above presents the t-statistics from Diebold–Mariano–West tests of equal predictive ac-
curacy for the benchmark models and the duration-dependent Markov-switching Combination (DDMSC)
approach. In bold, we have the t-statistic greater than 1.65 (1.96) in absolute value, which indicates a
rejection of the null of equal predictive accuracy at the 0.10 (0.05) level. A positive t-statistic indicates that
the benchmark models forecast produced larger average loss than the DDMSC approach, while a negative
sign indicates the opposite. In our forecast exercise, we use five equally spaced duration values, 5, 60, 120,
180 and 236, respectively.

6We use 30 days for the holdout out-of-sample period.
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Table 5: Diebold–Mariano–West test
Moving Weighted - DMSFE θ = 1.0

Models Loss Functions MedRV (5 Min.) MinRV (5 Min.) BV (5 Min.) RV (5 Min.)

DDMSC x GARCH
MSE -0.52 -0.47 -0.73 -0.89

QLIKE 1.70 1.66 1.79 2.12

DDMSC x MS-GARCH
MSE 1.12 1.12 1.44 2.10

QLIKE 1.98 1.84 2.40 3.43

DDMSC x EGARCH
MSE 0.04 0.14 -0.04 -0.18

QLIKE 1.56 1.51 1.60 1.83

DDMSC x MS-EGARCH
MSE 0.70 0.72 0.83 0.99

QLIKE 1.88 1.78 2.24 3.01

DDMSC x GJR-GARCH
MSE -0.56 -0.50 -0.76 -0.94

QLIKE 1.69 1.65 1.78 2.10

DDMSC x MS-GJR-GARCH
MSE 1.94 1.83 1.98 2.18

QLIKE 1.74 1.61 1.77 1.97

DDMSC x DMSFE Garch-Types
MSE 0.02 0.15 0.06 0.04

QLIKE 1.59 1.52 1.77 2.21

DDMSC x DDMS 120
MSE 0.78 0.70 0.58 0.60

QLIKE 1.74 1.70 1.82 2.14

Note: The table above presents the t-statistics from Diebold–Mariano–West tests of equal predictive ac-
curacy for the benchmark models and the duration-dependent Markov-switching Combination (DDMSC)
approach. In bold, we have the t-statistic greater than 1.65 (1.96) in absolute value, which indicates a
rejection of the null of equal predictive accuracy at the 0.10 (0.05) level. A positive t-statistic indicates that
the benchmark models forecast produced larger average loss than the DDMSC approach, while a negative
sign indicates the opposite. In our forecast exercise, we use five equally spaced duration values, 5, 60, 120,
180 and 236, respectively.

3.4. Risk Prediction Evaluation

Apart from computing statistical measures of predictive accuracy as the point forecast-
based ones reported in the previous section, it is also important to evaluate the perfor-
mance of the volatility forecasts in terms of the out-of-sample VaR. VaR is the most used
measure of financial risk, it is easy and intuitive for non-specialists to understand and
offers a more sensible measure of the risk than variance since it focuses on losses (see
Nieto and Ruiz, 2016, for a comprehensive survey on VaR forecasting). Assuming that
the returns are zero mean and serially uncorrelated, the one-step-ahead VaR conditional
on information available at time t is computed as

VaRα

t+1|t = Qασt+1|t , (9)

where Qα is the α quantile of the standardized error distribution (assumed normal in our
case7) and σt+1|t is the one-step-ahead volatility forecast.

The VaR forecast adequacy of the models is assessed through backtesting procedures.
VaR backtesting procedures usually check the assumptions of correct coverage of the un-
conditional and conditional left–tail of log–returns distribution and that the VaR failures

7See Fameliti and Skintzi (2020) for the same error distribution assumption for the model combination
case and Ardia et al. (2018) for the parametric construction of the VaR for the Markov-switching model.
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occur independently. As common practice in the VaR forecasting literature, we apply
the independence test (IND) of Christoffersen (1998), the unconditional coverage (UC)
test of Kupiec (1995), the conditional coverage (CC) test of Christoffersen (1998), the dy-
namic quantile (DQ) test of Engle and Manganelli (2004), and for model comparison we
also compute the average quantile loss function (AQL) of González-Rivera et al. (2004).
An explanation of each of the statistical tests is provided by Nieto and Ruiz (2016) and
Troster et al. (2019).

Table 6 reports the hit rate (returns smaller than VaR), the p-values of the IND, UC,
CC and DQ tests, and the average loss (AQL) for the 1% and 2.5% VaR levels obtained
with each of the models considered in the paper. DDMSC(M) denotes the fixed weighted
model combination while DDMSC(0.9) and DDMSC(1.0) are the moving weighted model
combinations using θ=0.9 and 1.0, respectively, as discount factor values.8 Gray cells in
the columns for the tests indicate p-values greater than 0.05 (non-rejection at the 5%
signifcance level), while bold values in the column of AQL indicate the model with the
best performance (lowest average loss). For both 1% and 2.5% VaR levels we observe that,
although all the models exceed the proportion of VaR failures, the DDMSC specifications
report hit rates closer to the confidence VaR levels than those of the Garch-type models.
We can also observe that, for both 1% and 2.5% VaR levels, all the models passed the
independence test of VaR failures.

When looking at the coverage tests UC, CC and DQ for the 1% VaR level, we find that
all the models are rejected at the usual 5% significance level. Considering the 2.5% VaR
level, the DDMS specifications show p-values much higher than the GARCH-type models.
For the UC test, only the GARCH combinations are rejected. However, as we move to
more robust tests (CC and DQ), only the DDMS 120, DDSMC and MS-EGARCH models
are not rejected. Comparing these models, the DDMSC(M) report the lowest average loss.
It is worth noting, that all the DDMSC combining strategies showed average losses lower
than the DDMS 120’s loss, indicating that taking into account the uncertainty about the
duration dependence parameter is important to improve VaR forecasts of DDMS models.

8We report only the results for DDMSC(0.9) and DDMSC(1.0) procedures estimated using the RV
proxy. Results using the other realized variance proxies for the moving weighted model combination
strategy were similar, which are, therefore, available upon request.
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Table 6: Backtesting results

1% VaR 2.5 % VaR
Models

Hit rate IND UC CC DQ AQL Hit rate IND UC CC DQ AQL

DDMS 120 2.6% 0.431 0.001 0.003 0.000 1.262 3.1% 0.131 0.349 0.206 0.174 2.280

DDMSC(M) 2.1% 0.272 0.015 0.028 0.019 1.213 3.3% 0.161 0.239 0.187 0.190 2.251

DDMSC(0.9) 2.1% 0.272 0.015 0.028 0.018 1.219 3.3% 0.161 0.239 0.187 0.187 2.258

DDMSC(1.0) 2.1% 0.272 0.015 0.028 0.019 1.214 3.3% 0.161 0.239 0.187 0.190 2.252

GARCH 2.9% 0.105 0.000 0.000 0.000 1.298 3.8% 0.057 0.061 0.028 0.004 2.345

MS-GARCH 2.8% 0.490 0.000 0.001 0.000 1.292 3.8% 0.057 0.061 0.028 0.005 2.317

EGARCH 2.5% 0.375 0.002 0.006 0.003 1.220 3.8% 0.057 0.061 0.028 0.005 2.271

MS-EGARCH 2.5% 0.384 0.002 0.006 0.008 1.219 3.8% 0.274 0.061 0.095 0.092 2.253

GJR-GARCH 3.1% 0.131 0.000 0.000 0.000 1.294 3.8% 0.057 0.061 0.028 0.004 2.342

MS-GJR-GARCH 2.8% 0.490 0.000 0.001 0.000 1.311 3.8% 0.057 0.061 0.028 0.001 2.370

Mean Garch-Types 2.6% 0.431 0.001 0.003 0.001 1.265 3.9% 0.073 0.036 0.022 0.003 2.312

DMSFE 0.9 Garch-Types 2.6% 0.431 0.001 0.003 0.001 1.265 3.9% 0.073 0.036 0.022 0.003 2.309

DMSFE 1.0 Garch-Types 2.6% 0.431 0.001 0.003 0.001 1.265 3.9% 0.073 0.036 0.022 0.003 2.311

Note: This table reports the backtesting results for the VaR forecasts at the risk levels of 1% and 2.5%
obtained with the duration-dependent Markov-switching Combination (DDMSC) and the benchmark mod-
els. The hit rate and the p-values of the independence (IND), unconditional coverage (UC), conditional
coverage (CC) and dynamic quantile (DQ) tests are also reported. We also report the average quantile
loss function (AQL). Gray cells denote p-values greater than 0.05, indicating the non-rejection of the null
hypothesis of the test, and we highlight in bold the model with lowest average loss for each VaR level.

4. Conclusion

This paper investigates the out-of-sample properties of the duration-dependent Markov-
switching model to forecast the conditional volatility while allowing for uncertainty in its
duration process. We rely on the model combination approach and aggregate N individ-
ual model forecasts, each indexed by a fixed duration memory, into a pooled modeling
approach to tackle duration selection. More precisely, our empirical strategy set the
lower and upper bounds of the duration index set using the smooth probabilities of the
classical Markov-switching model. Our empirical analysis is conducted through a pair-
wise statistical test for the one-day ahead predicted bitcoin volatility from April 2018 to
January 2020, 641 out-of-sample observations. We apply different volatility proxies and
loss functions commonly found in the literature for robustness checking. Overall results
indicated that our modeling approach outperforms the Markov-switching GARCH-types
models when considering point forecasts.

Regarding the out-of-sample VaR performance of the volatility forecasts, backtesting
procedures were conducted. For the 2.5% VaR forecasts, ours proposals deliver satisfac-
tory results, outperforming the Garch-type models and the DDMS 120 model. It is worth
noting that, improvements over the benchmark models were achieved even by simple
combining strategies as a simple model averaging. These results suggest the importance
of taking into account the uncertainty about the duration dependence parameter when
evaluating risk measures. For the 1% VaR forecasts, the results could be improved by
considering heavy-tailed distributions in the estimation of our proposals. Such extensions
are left for future research.
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Appendix

Table 7: Realized Measures

RV
m
∑

i=1
r2
i,t

BV π

2
( m

m−1
)

∑
m−1
i=1 |ri,t ||ri+1,t |

MinRV π

π−2
( m

m−1
)

∑
m−1
i=1 min(|ri,t ||ri+1,t |)

2

MedRV π

6−4
√

3+π

( m
m−2

)
∑

m−1
i=2 median(|ri−1,t ||ri,t ||ri+1,t |)

2

Note: The table above presents the realized measures used as volatilities proxies in our empirical research.
Considering a trading day t divided into m equally sized sub-periods with return ri,t in sub-period i, we have
m = 288 for 5 minutes intra-day Bitcoin prices quotes.

Table 8: GARCH-type Specifications

rt = ut , ut = σk,tzt , zt ∼ N(0,1)

GARCH σ2
k,t = ωk + α1,ku2

t−1 + βkσ2
k,t−1

EGARCH ln(σ2
k,t) = ωk + α1,k(|ut−1

/
σk,t−1

|−E[|ut−1
/

σk,t−1
|])u2

t−1 + α2,k
ut−1

/
σk,t−1

+ βk ln(σ2
k,t−1)

GJR-GARCH σ2
k,t = ωk +(α1,k + α2,kI{ut−1 < 0})u2

t−1 + βkσ2
k,t−1

Note: The table above presents the GARCH-type specifications. The number of regimes is defined by k=1,2
and I{·} is the indicator function. We follow the modelling approach of Haas et al. (2004).
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